CMSC202
Computer Science Il for Majors

Lecture 09 —
Overloaded Operators and More

Based on slides by Chris Marron at UMBC www.umbc.edu

Last Class We Covered

* Overloading methods
— “Regular” class methods
— Overloaded constructors

* Completed our Rectangle class

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

To learn about vectors

— Better than arrays!
o learn about enumeration and its uses
o learn how to overload operators

o begin to cover dynamic memory allocation

www.umbc.edu

Principle of Least Privilege

e Whatis it?

* Every module

— Process, user, program, etc.

 Must have access only to the information and
resources

— Functions, variables, etc.

* That are necessary for legitimate purposes

— (i.e., this is why variables are private)

www.umbc.edu

Access Specifiers for Date Class

AN HONORS UNIVERSITY IN MARYLAND

class Date {
public:
void OutputMonth() ;
int GetMonth();
int GetDay()
int GetYear():
void SetMonth (int m) ;
void SetDay (int d);
void SetYear (int y);
private:
int m month;
int m day;
int m year;

};

should all of these
functions really be
publicly accessible?

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Vectors

www.umbc.edu

Vectors

* Similar to arrays, but much more flexible

— C++ will handle most of the “annoying” bits

* Provided by the C++ Standard Template
Library (STL)

— Must #include <vector> to use

www.umbc.edu

Declaring a Vector

vector <int> intA;

— Empty integer vector, called intA

intA

www.umbc.edu

Declaring a Vector

vector <int> intB (10);

— Integer vector with 10 integers,
initialized (by default) to zero

intB

10

www.umbc.edu

Declaring a Vector

vector <int> intC (10, -1);

— Integer vector with 10 integers,
initialized to -1

1 -1 -1 -1 -1 -1 -1 -1 -1 -1

11

www.umbc.edu

Vector Assignment

* Unlike arrays, can assigh one vector to another
— Even if they’re different sizes
— As long as they’re the same type

intA = intB;

size0 size 10 (intAis now 10 elements too)

O 0 0 O O 0 0 O0 o|oO0
intA

12

www.umbc.edu

Vector Assignment

* Unlike arrays, can assignh one vector to another
— Even if they’re different sizes

13

— As long as they’re the same type

intA intB;

size O size 10

intA = charA;
NOT okay!

(intA is now 10 elements too)

www.umbc.edu

Copying Vectors

* Can create a copy of an existing
vector when declaring a new vector
vector <int> intD (intC);

-1/-1/-1/-1/-1/-1 -1 |-1|-1]-1

www.umbc.edu

Accessing Vector Members

e We have two different methods available

* Square brackets:
intB[2] = 7;

e The .at () operation:
intB.at(2) = 7;

15

www.umbc.edu

Accessing Members with []

* Function just as they did with arrays
for (1 = 0; 1 < 10; 1i++) {
intB[1] = 1; }

O 1 2 3 4 5 6 7 8 9
intB

* But there is still no bounds checking

— Going out of bounds may cause segfaults

16

www.umbc.edu

Accessing Members with .at ()

* The.at () operator uses bounds checking

* Will throw an exception when out of bounds
— Causes program to terminate
—We can handle it (with try-catch blocks)

e We'll cover these later in the semester

* Slower than [], but much safer

17

www.umbc.edu

Passing Vectors to Functions

* Unlike arrays, vectors are by default
passed by value to functions

— A copy is made, and that copy is passed
to the function

— Changes made do not show inmain ()

* But we can explicitly pass vectors by reference

18

www.umbc.edu

Passing Vectors by Reference

* To pass vectors by reference, nothing changes in
the function call:

// function call:

// works for passing by wvalue

// and for passing by reference
ModifyV (refVector);

* Which is really handy!

e But can also cause confusion about what’s
going on, so be careful
19

www.umbc.edu

Passing Vectors by Reference

e But to pass a vector by reference, we do
need to change the function prototype:

// function prototype
// for passing by value
void ModifyV (vector < int > ref);

* What do you think needs to change?

20

www.umbc.edu

Passing Vectors by Reference

e But to pass a vector by reference, we do
need to change the function prototype:

void ModifyV (vector&< int > ref);
void ModifyV (vector <&int > ref);
void ModifyV (vector < inté&> ref);
void ModifyV (vector < int > &ref);
void ModifyV (vectoré&<&inté&> &ref);

* What do you think needs to change?

21

www.umbc.edu

Passing Vectors by Reference

e But to pass a vector by reference, we do
need to change the function prototype:

void ModifyV (vector < int > &ref);

22

www.umbc.edu

Multi-Dimensional Vectors

www.umbc.edu

Multi-Dimensional Vectors

e 2-dimensional vectors are essentially
“a vector of vectors”

vector < vector <char> > charVec;

1

this space in between the two
closing >’ characters is required

by many implementations of C++

24

www.umbc.edu

Elements in 2D Vectors

* To access 2D vectors, just chain the accessors:

you should be using
* Square brackets: the .at () operator

intB[2][3] = 7; though, since it is
much safer than []

e The .at () operator:
intB.at(2) .at(3) = 7;

25

www.umbc.edu

resize()

void resize (n, wval);

e nisthe new size of the vector

— If larger than current size, vector is expanded

— If smaller than current,
vector is reduced to first n elements

* val is an optional value

— Used to initialize any new elements
— If not given, the default constructor is used

26

www.umbc.edu

Using resize()

* |f we declare an empty vector, one way we can
change it to the size we want is resize ()

vector < string > stringVec;

stringVec.resize (9) ;

 Or, if we want to initialize the new elements:
stringVec.resize (9, “hello!”);

27 www.umbc.edu

push back()

e To add a new element at the end of a vector

void push back (val);

e val is the value of the new element that will
be added to the end of the vector

charVec.push back(‘a’);

28

www.umbc.edu

resize() vs push back()

e resize () is best used when you know the
exact size a vector needs to be

— Like when you have the exact number of
students that will be in a class roster

* push back () is best used when elements
are added one by one
— Like when you are getting input from a user

29 www.umbc.edu

* Unlike arrays, vectors in C++ “know” their size

— Because C++ manages vectors for you

e size () returns the number of elements in
the vector it is called on
— Does not return an integer!

— You will need to cast it

30

www.umbc.edu

Using size()

int cSize;

// this will not work

cSize = charVec.size () ;

// you must cast the return type

cSize = (int) charVec.size() ;

31

www.umbc.edu

Enumeration

www.umbc.edu

Enumeration

 Enumerations are a type of variable used to
set up collections of named integer constants

e Useful for “lists” of values that are tedious to
implement using const

const int WINTER O
const int SPRING 1
const int SUMMER 2
const int FALL 3

33

www.umbc.edu

Enumeration Types

* Two types of enum declarations:

* Named type

enum seasons {WINTER, SPRING,
SUMMER, FALL};

* Unnamed type

enum {WINTER, SPRING,
SUMMER, FALL}

34

www.umbc.edu

Named Enumerations

* Named types allow you to create variables of
that type, to use it in function arguments, etc.

// declare a variable of

// the enumeration type '"seasons"
// called currentSemester

enum seasons currentSemester;

currentSemester = FALL;

35 www.umbc.edu

Unnamed Enumerations

 Unnamed types are useful for naming
constants that won’t be used as variables

int userChoice;

cout << "“Please enter season: ”;
cin >> userChoice;

switch (userChoice) {

case WINTER:

cout << “brr!”; /* etc */

36

www.umbc.edu

Benefits of Enumeration

* Named enumeration types allow you to
restrict assignments to only valid values

— A ‘seasons’ variable cannot have a value other
than those in the enum declaration

* Unnamed types allow simpler management of
a large list of constants, but don’t prevent
invalid values from being used

37

www.umbc.edu

Operator Overloading

www.umbc.edu

Function Overloading

e Last class, covered overloading constructors:
Date: :Date (int m, int 4, int v);
Date: :Date (int m, int d4d);

Date: :Date ()

* And overloading other functions:
void PrintMessage (void) ;
void PrintMessage (string msgqg) ;

39

www.umbc.edu

Operators

* Given variable types have predefined behavior
for operators like +, =, ==, and more

* For example:

stringP = stringQ;

1f (charX == charY) {
intA = intB + 1intC;
intD += 1intE;

40

www.umbc.edu

Operators

* |t would be nice to have these operators also
work for user-defined variables, like classes

e \WWe could even have them as member
functions!

— Allow access to member variables and functions
that are set to private

* This is all possible via operator overloading

41 www.umbc.edu

Overloading Restrictions

* We cannotoverload ::, ., *, or °?

* We cannot create new operators

* Some of the overload-able operators include

=, >, <<, ++, -, +=, +,
<I >I <=I >=I ==I !=I []

42

www.umbc.edu

Why Overload?

* Let’s say we have a Money class:

class Money {
public: /* etc */
private:

int m dollars;

int m_cents;

} o

43

www.umbc.edu

Why Overload?

 And we have two Money objects:

// we have $700.65 in cash, and

// need to pay $99.85 for bills

Money cash (700, 65) ; |cashisnow 601

Money bills (99, 85) ; |dollarsand-20
cents, or S601.-20

* What happens if we do the following?
cash = cash - bills;

44

www.umbc.edu

Why Overload?

 That doesn’t make any sense! What’s going on?

* The default subtraction operator provided by
the compiler only works on a naive level

— It subtractsbills.m dollars from
cash.m dollars

— And it subtractsbills.m cents from
cash. m cents

 This isn’t what we want!

— So we must write our own subtraction operator
45

www.umbc.edu

Operator Overloading Prototype

Money operator- (const Money é&amount2);

i

This tells the We’'re passing in a
compiler that Money object as a
we are const

overloading

an operator

We’re returning And that it’s

an object of the the subtraction

class type operator
46

www.umbc.edu

Operator Overloading Prototype

Money operator- (const Money é&amount2);

Y,

This tells the We’'re passing in a
compiler that Money object as a
we are const

overloading

an operator

We’re returning And that it’s

an object of the the subtraction

class type operator
47

www.umbc.edu

Operator Overloading Prototype

Money operator- (const Money &amount2);

Y,

This tells the
compiler that
we are
overloading
an operator

We’re returning And that it’s

an object of the the subtraction

class type operator
48

We’re passing in a
Money object as a
const and by

f
FETErente Why would we

want to do that?

Reference means we don’t
waste space with a copy,
and const means we can’t
change it accidentally

www.umbc.edu

Operator Overloading Definition

Money operator- (const Money &amount2)

{
int dollarsRet, centsRet;

// how would you solve this?
// (see the uploaded livecode)

return Money (dollarsRet, centsRet);

49

www.umbc.edu

When to Overload Operators

* Do the following make sense as operators?
(1) today = today + tomorrow;

(2) if (today == tomorrow)

* Only overload an operator for a class that
“makes sense” for that class

— Otherwise it can be confusing to the user
* Use your best judgment

50

www.umbc.edu

Announcements

* Project 2 is out — get started now!
— |t is due Thursday, March 10th

 Exam 1 will be given back in class on Tuesday
 We will discuss it then

* | will not be here Thursday
— Dr. Chang will be filling in for me
— He will cover dynamic memory allocation in detail

51

www.umbc.edu

